
ar
X

iv
:1

10
1.

35
20

v1
 [

cs
.D

C
]

 1
8

Ja
n

20
11

Error-Free Multi-Valued Consensus with Byzantine Failures ∗

Guanfeng Liang and Nitin Vaidya

Department of Electrical and Computer Engineering, and

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

gliang2@illinois.edu, nhv@illinois.edu

January 19, 2011

Abstract

In this paper, we present an efficient deterministic algorithm for consensus in presence of
Byzantine failures. Our algorithm achieves consensus on an L-bit value with communication
complexity O(nL + n4L0.5 + n6) bits, in a network consisting of n processors with up to t
Byzantine failures, such that t < n/3. For large enough L, communication complexity of the
proposed algorithm approaches O(nL) bits. In other words, for large L, the communication
complexity is linear in the number of processors in the network. This is an improvement over
the work of Fitzi and Hirt (from PODC 2006), who proposed a probabilistically correct multi-
valued Byzantine consensus algorithm with a similar complexity for large L. In contrast to the
algorithm by Fitzi and Hirt, our algorithm is guaranteed to be always error-free. Our algorithm
require no cryptographic technique, such as authentication, nor any secret sharing mechanism.
To the best of our knowledge, we are the first to show that, for large L, error-free multi-valued
Byzantine consensus on an L-bit value is achievable with O(nL) bits of communication.

∗This research is supported in part by Army Research Office grant W-911-NF-0710287 and
National Science Foundation award 1059540. Any opinions, findings, and conclusions or recom-
mendations expressed here are those of the authors and do not necessarily reflect the views of the
funding agencies or the U.S. government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
19 JAN 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Error-Free Multi-Valued Consensus with Byzantine Failures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois at Urbana-Champaign,Department of Electrical and
Computer Engineering,Coordinated Science
Laboratory,Urbana,IL,61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper, we present an efficient deterministic algorithm for consensus in presence of Byzantine
failures. Our algorithm achieves consensus on an L-bit value with communication complexity O(nL +
n4L0.5 + n6) bits, in a network consisting of n processors with up to t Byzantine failures, such that t < n/3.
For large enough L, communication complexity of the proposed algorithm approaches O(nL) bits. In other
words, for large L, the communication complexity is linear in the number of processors in the network.
This is an improvement over the work of Fitzi and Hirt (from PODC 2006), who proposed a
probabilistically correct multivalued Byzantine consensus algorithm with a similar complexity for large L.
In contrast to the algorithm by Fitzi and Hirt, our algorithm is guaranteed to be always error-free. Our
algorithm require no cryptographic technique, such as authentication, nor any secret sharing mechanism.
To the best of our knowledge, we are the first to show that, for large L, error-free multi-valued Byzantine
consensus on an L-bit value is achievable with O(nL) bits of communication.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

This paper considers the multi-valued Byzantine consensus problem. The Byzantine consensus
problem considers n processors, namely P1, ..., Pn, of which at most t processors may be faulty and
deviate from the algorithm in arbitrary fashion. Each processor Pi is given an L-bit input value vi,
and they want to agree on a value v such that the following properties are satisfied:

• Termination: every fault-free Pi eventually decides on an output value v′i,

• Consistency: the output values of all fault-free processors are equal, i.e., for every fault-free
processor Pi, v

′

i = v′ for some v′,

• Validity: if every fault-free Pi holds the same input vi = v for some v, then v′ = v.

Algorithms that satisfy the above properties in all executions are said to be error-free.

We are interested in the communication complexity of error-free consensus algorithms. Com-
munication complexity of an algorithm is defined as the maximum (over all permissible executions)
of the total number of bits transmitted by all the processors according to the specification of the
algorithm. This measure of complexity was first introduced by Yao [11], and has been widely used
by the distributed computing community [4, 5, 10].

System Model: We assume network and adversary models commonly used in other related work
[7, 1, 2, 5, 6].

We assume a synchronous fully connected network of n processors, wherein the processor iden-
tifiers are common knowledge. Every pair of processors are connected with a pair of directed
point-to-point communication channels. Whenever a processor receives a message on such a di-
rected channel, it can correctly assume that the message is sent by the processor at the other end
of the channel.

We assume a Byzantine adversary that has complete knowledge of the state of the other pro-
cessors, including the L-bit input values. No secret is hidden from the adversary. The adversary
can take over up to t processors (t < n/3) at any point during the algorithm. These processors
are said to be faulty. The faulty processors can engage in any “misbehavior”, i.e., deviations from
the algorithm, including sending incorrect messages, and collusion. The remaining processors are
fault-free and follow the algorithm.

Finally, we make no assumption of any cryptographic technique, such as authentication and
secret sharing.

It has been shown that error-free consensus is impossible if t ≥ n/3 [9, 7]. Ω(n2) has been shown
to be a lower bound on the number of messages needed to achieve error-free consensus [3]. Since
any message must be of at least 1 bit, this gives a lower bound of Ω(n2) bits on the communication
complexity of any binary (1-bit) consensus algorithm.

In practice, agreement is sometimes required for longer messages rather than just single bits.
For instance, the “value” being agreed upon may be a large file in a fault-tolerant distributed
storage system. For instance, as [5] suggests, in a voting protocol, the authorities must agree on

1

the set of all ballots to be tallied (which can be gigabytes of data). Similarly, as also suggested in
[5], multi-valued Byzantine agreement is relevant in secure multi-party computation, where many
broadcast invocations can be parallelized and thereby optimized to a single invocation with a long
message.

The problem of achieving consensus on a single L-bit value may be solved using L instances
of a 1-bit consensus algorithm. However, this approach will result in communication complexity
of Ω(n2L), since Ω(n2) is a lower bound on communication complexity of 1-bit consensus. In a
PODC 2006 paper, Fitzi and Hirt [5] presented a probabilistically correct multi-valued consensus
algorithm which improves the communication complexity to O(nL) for sufficiently large L, at the
cost of allowing a non-zero probability of error. Since Ω(nL) is a lower bound on the communication
complexity of consensus on an L-bit value, this algortihm has optimal complexity for large L. In
their algorithm, an L-bit value (or message) is first reduced to a much shorter message, using
a universal hash function. Byzantine consensus is then performed for the shorter hashed values.
Given the result of consensus on the hashed values, consensus on L bits is then achieved by requiring
processors whose L-bit input value matches the agreed hashed value deliver the L bits to the other
processors jointly. By performing initial consensus only for the smaller hashed values, this algorithm
is able to reduce the communication complexity to O(nL+n3(n+κ)) where κ is a parameter of the
algorithm. However, since the hash function is not collision-free, this algorithm is not error-free.
Its probability of error is lower bounded by the collision probability of the hash function.

We improve on the work of Fitzi and Hirt [5], and present a deterministic error-free consensus
algorithm with communication complexity of O(nL) bits for sufficiently large L. Our algorithm
always produce the correct result, unlike [5]. For smaller L, the communication complexity of our
algorithms is O(nL+n4L0.5+n6). To our knowledge, this is the first known error-free multi-valued
Byzantine consensus algorithm that achieves, for large L, communication complexity linear in n.

2 Byzantine Consensus: Salient Features of the Algorithm

The goal of our consensus algorithm is to achieve consensus on an L-bit value (or message). The
algorithm is designed to perform efficiently for large L. Consequently, our discussion will assume
that L is “sufficiently large” (how large is “sufficiently large” will become clearer later in the paper).
We now briefly describe the salient features of our consensus algorithm, with the detailed algorithm
presented later in Section 3.

• Algorithm execution in multiple generations: To improve the communication complexity, con-
sensus on the L-bit value is performed “in parts”. In particular, for a certain integer D, the
L-bit value is divided into L/D parts, each consisting of D bits. For convenience of presen-
tation, we will assume that L/D is an integer. A sub-algorithm is used to perform consensus
on each of these D-bit values, and we will refer to each execution of the sub-algorithm as a
“generation”.

• Memory across generations: If during any one generation, misbehavior by some faulty pro-
cessor is detected, then additional (and expensive) diagnostic steps are performed to gain
information on the potential identity of the misbehaving processor(s). This information is
captured by means of a diagnosis graph, as elaborated later. As the sub-algorithm is performed

2

for each new generation, the diagnosis graph is updated to incorporate any new information
that may be learnt regarding the location of the faulty processors. The execution of the
sub-algorithm in each generation is adapted to the state of the diagnosis graph at the start
of the generation.

• Bounded instances of misbehavior: With Byzantine failures, it is not always possible to im-
mediately determine the identity of a misbehaving processor. However, due to the manner in
which the diagnosis graph is maintained, and the manner in which the sub-algorithm adapts
to the diagnosis graph, the t (or fewer) faulty processors can collectively misbehave in at
most t(t+1) generations, before all the faulty processors are exactly identified. Once a faulty
processor is identified, it is effectively isolated from the network, and cannot tamper with
future generations. Thus, t(t + 1) is also an upper bound on the number of generations in
which the expensive diagnostic steps referred above may need to be performed.

• Low-cost failure-free execution: Due to the bounded number of generations in which the
faulty processors can misbehave, it turns out that the faulty processors do not tamper with
the execution in a majority of the generations. We use a low-cost mechanism to achieve
consensus in failure-free generations, which helps to achieve low communication complexity. In
particular, we use an error detecting code-based strategy to reduce the amount of information
the processors must exchange to be able to achieve consensus in the absence of any misbehavior
(the strategy, in fact, also allows detection of potential misbehavior).

• Consistent diagnosis graph maintenance: A copy of the diagnosis graph is maintained locally
by each fault-free processor. To ensure consistent maintenance of this graph, the diagnostic
information (elaborated later) needs to be distributed consistently to all the processors in
the network. This operation itself requires a Byzantine broadcast algorithm that solves the
“Byzantine Generals Problem” [7]. With this algorithm, a “source” processor broadcasts its
message to all other processors reliably, even if some processors (including the source) may
be faulty. For this operation we use an error-free 1-bit Byzantine broadcast algorithm that
tolerates t < n/3 Byzantine failures with communication complexity of O(n2) bits [2, 1].
This 1-bit broadcast algorithm is referred as Broadcast Single Bit in our discussion. While
Broadcast Single Bit is expensive, the cumulative overhead of Broadcast Single Bit is kept
low by invoking it a relatively small number of times, when compared to L.

We now elaborate on the error detecting code used in our algorithms, and also describe the
diagnosis graph in some more detail.

Error detecting code: We will use Reed-Solomon codes in our algorithms (potentially other
codes may be used instead). Consider a (m,k) Reed-Solomon code in Galois Field GF(2c), where
c is chosen large enough (specifically, m ≤ 2c − 1). This code encodes k data symbols from GF(2c)
into a codeword consisting ofm symbols from GF(2c). Each symbol from GF(2c) can be represented
using c bits. Thus, a data vector of k symbols contains kc bits, and the corresponding codeword
contains mc bits.

Each symbol of the codeword is computed as a linear combination of the k data symbols, such
that every subset of k coded symbols represent a set of linearly independent combinations of the k
data symbols. This property implies that any subset of k symbols from the m symbols of a given

3

codeword can be used to determine the data vector corresponding to the codeword. Similarly,
knowledge of any subset of k symbols from a codeword suffices to determine the remaining symbols
of the codeword. So k is also called the dimension of the code.

For a code C, let us denote C() as the encoding function, and C−1() as the decoding function.
The decoding function can be applied so long as at least k symbols of a codeword are available.

Diagnosis Graph: The fault-free processors’ (potentially partial) knowledge of the identity of
the faulty processors is captured by a diagnosis graph. A diagnosis graph is an undirected graph
with n vertices, with vertex i corresponding to processor Pi. A pair of processors are said to “trust”
each other if the corresponding pairs of vertices in the diagnosis graph is connected with an edge;
otherwise they are said to “accuse” each other.

Before the start of the very first generation, the diagnosis graph is initialized as a fully connected
graph, which implies that all the n processors initially trust each other. During the execution of the
algorithm, whenever misbehavior by some faulty processor is detected, the diagnosis graph will be
updated, and one or more edges will be removed from the graph, using the diagnostic information
communicated using the Broadcast Single Bit algorithm. The use of Broadcast Single Bit ensures
that the fault-free processors always have a consistent view of the diagnosis graph. As we will show
later, the evolution of the diagnosis graph satisfies the following properties:

• If an edge is removed from the diagnosis graph, at least one of the processors corresponding
to the two endpoints of the removed edge must be faulty.

• The fault-free processors always trust each other throughout the algorithm.

• If more than t edges at a vertex in the diagnosis graph are removed, then the processor
corresponding to that vertex must be faulty.

The last two properties above follow directly from the first property, and the assumption that there
are at most t faulty processors.

3 Multi-Valued Consensus

In this section, we describe our consensus algorithm, present a proof of correctness.

The L-bit input value vi at each processor is divided into L/D parts of size D bits each, as
noted earlier. These parts are denoted as vi(1), vi(2), · · · , vi(L/D).

Our algorithm for achieving L-bit consensus consists of L/D sequential executions of Algorithm
1 presented in this section (we will discuss the algorithm in detail below). Algorithm 1 is executed
once for each generation. For the g-th generation (1 ≤ g ≤ L/D), each processor Pi uses vi(g) as
its input in Algorithm 1. Each generation of the algorithm results in processor Pi deciding on g-th
part (namely, v′i(g)) of its final decision value v′i.

The value vi(g) is represented by a vector of n − 2t symbols, each symbol represented with
D/(n− 2t) bits. For convenience of presentation, we assume that D/(n− 2t) is an integer. We will
refer to these n− 2t symbols as the data symbols.

4

A (n, n− 2t) distance-(2t+1) Reed-Solomon code, denoted as C2t, is used to encode the n− 2t
data symbols into n coded symbols. We assume that D/(n− 2t) is large enough to allow the above
Reed-Solomon code to exist, specifically, n ≤ 2D/(n−2t) − 1. This condition is met only if L is large
enough (since L > D).

We now present some notations to be used in our discussion below. For a m-element vector
V , we denote V [j] as the j-th element of the vector, 1 ≤ j ≤ m. Given a subset A ⊆ {1, . . . ,m},
denote V/A as the ordered list of elements of V at the locations corresponding to elements of A. For
instance, if m = 5 and A = {2, 4}, then V/A is equal to (V [2], V [4]). We will say that V/A ∈ C2t

if there exists a codeword Z ∈ C2t such that Z/A = V/A. Otherwise, we will say that V/A /∈ C2t.
Suppose that Z is the codeword corresponding to data v. This is denoted as Z = C2t(v), and
v = C−1

2t (Z). We will extend the definition of the inverse function C−1
2t as follows. When set A

contains at least n− 2t elements, we will define C−1
2t (V/A) = v, if there exists a codeword Z ∈ C2t

such that Z/A = V/A and C2t(v) = Z.

Let the set of all the fault-free processors be denoted as Pgood.

Algorithm 1 for each generation g consists of three stages. We summarize the function of these
three stages first, followed by a more detailed discussion:

1. Matching stage: Each processor Pi encodes its D-bit input vi(g) for generation g into n coded
symbols, as noted above. Each processor Pi sends one of these n coded symbols to the other
processors that it trusts. Processor Pi trusts processor Pj if and only if the corresponding
vertices in the diagnosis graph are connected by an edge. Using the symbols thus received
from each other, the processors attempt to identify a “matching set” of processors (denoted
Pmatch) of size n − t such that the fault-free processors in Pmatch are guaranteed to have
an identical input value for the current generation. If such a Pmatch is not found, it can be
determined with certainty that all the fault-free processors do not have the same input value
– in this case, the fault-free processors decide on a default output value and terminate the
algorithm.

2. Checking stage: If a set of processors Pmatch is identified in the above matching stage, each
processor Pj /∈ Pmatch checks whether the symbols received the from processors in Pmatch

correspond to a valid codeword. If such a codeword exists, then the symbols received from
Pmatch are said to be “consistent”. If any processor finds that these symbols are not consistent,
then misbehavior by some faulty processor is detected. Else all the processors are able to
correctly compute the value to be agreed upon in the current generation.

3. Diagnosis stage: When misbehavior is detected in the checking stage, the processors in Pmatch

are required to broadcast the coded symbol they sent in the matching stage, using the Broad-
cast Single Bit algorithm. Using the information received during these broadcasts, the fault-
free processors are able to learn new information regarding the potential identity of the faulty
processor(s). The diagnosis graph (called Diag Graph in Algorithm 1) is updated to incorpo-
rate this new information.

In the rest of this section, we discuss each of the three stages in more detail. Note that whenever
algorithm Broadcast Single Bit is used, all the fault-free processors will receive the broadcasted
information identically. One instance of Broadcast Single Bit is needed for each bit of information
broadcasted using Broadcast Single Bit .

5

Algorithm 1 Multi-Valued Consensus (generation g)

1. Matching Stage:

Each processor Pi performs the matching stage as follows:

(a) Compute (Si[1], . . . , Si[n]) = C2t(vi(g)), and send Si[i] to every trusted processor Pj

(b) Ri[j]←

{

symbol that Pi receives from Pj , if Pi trusts Pj ;
⊥, otherwise

(c) If Si[j] = Ri[j] then Mi[j]← true ; else Mi[j]← false

(d) Pi broadcasts the vector Mi using Broadcast Single Bit

Using the received M vectors:

(e) Find a set of processors Pmatch of size n− t such that
Mj[k] = Mk[j] = true for every pair of Pj , Pk ∈ Pmatch

(f) If Pmatch does not exist then decide on a default value and terminate;
else enter the Checking Stage

2. Checking Stage:

Each processor Pj /∈ Pmatch performs steps 2(a) and 2(b):

(a) If Rj/Pmatch ∈ C2t then Detectedj ← false ; else Detectedj ← true .
(b) Broadcast Detectedj using Broadcast Single Bit .

Each processor Pi performs step 2(c):

(c) Receive Detectedj from each processor Pj /∈ Pmatch (broadcasted in step 2(b)).
If Detectedj = false for all Pj /∈ Pmatch, then decide on v′i(g) = C−1

2t (Ri/Pmatch);
else enter Diagnosis Stage

3. Diagnosis Stage:

Each processor Pj ∈ Pmatch performs step 3(a):

(a) Broadcast Sj[j] using Broadcast Single Bit
(one instance of Broadcast Single Bit is needed for each bit of Sj[j])

Each processor Pi performs the following steps:

(b) R#[j]← symbol received from Pj ∈ Pmatch as a result of broadcast in step 3(a)
(c) For all Pj ∈ Pmatch,

if Pi trusts Pj and Ri[j] = R#[j] then Trusti[j]← true ;
else Trusti[j]← false

(d) Broadcast Trusti/Pmatch using Broadcast Single Bit
(e) For each edge (j, k) in Diag Graph ,

remove edge (j, k) if Trustj[k] = false or Trustk[j] = false

(f) If R#/Pmatch ∈ C2t then
if for any Pj /∈ Pmatch,

Detectedj = true , but no edge at vertex j was removed in step 3(e)
then remove all edges at vertex j in Diag Graph

(g) If at least t+ 1 edges at any vertex j have been removed so far,
then processor Pj must be faulty, and all edges at j are removed.

(h) Find a set of processors Pdecide ⊂ Pmatch of size n− 2t in the updated Diag Graph,
such that every pair of Pj , Pk ∈ Pdecide trust each other.

(i) Decide on v′i(g) = C−1
2t (R#/Pdecide).

6

3.1 Matching Stage

The line numbers referred below correspond to the line numbers for the pseudo-code in Algorithm
1.

Line 1(a): In generation g, each processor Pi first encodes vi(g), represented by n − t symbols,
into a codeword Si from the code C2t. The j-th symbol in the codeword is denoted as Si[j]. Then
processor Pi sends Si[i], the i-th symbol of its codeword, to all the other processors that it trusts.
Recall that Pi trusts Pj if and only if there is an edge between the corresponding vertices in the
diagnosis graph (referred as Diag Graph in the pseudo-code).

Line 1(b): Let us denote by Ri[j] the symbol that Pi receives from a trusted processor Pj .
Processor Pi ignores any messages received from untrusted processors, treating the message as a
distinguished symbol ⊥.

Line 1(c): Flag Mi[j] is used to record whether processor Pi finds processor Pj ’s symbol consistent
with its own local value. Specifically, the pseudo-code in line 1(c) is equivalent to the following:

• When Pi trusts Pj : If Ri[j] = Si[j], then set Mi[j] = true ; else Mi[j] = false .

• When Pi does not trust Pj : Mi[j] = false .

Line 1(d): As we will see later, if a fault-free processor Pi does not trust another processor, then
the other processor must be faulty. Thus entry Mi[j] in vector Mi is false if Pi believes that
processor Pj is faulty, or that the value at processor Pj differs from the value at Pi. Thus, entry
Mi[j] being true implies that, as of this time, Pi believe that Pj is fault-free, and that the value
at Pj is possibly identical to the value at Pi. Processor Pi uses Broadcast Single Bit to broadcast
Mi to all the processors. One instance of Broadcast Single Bit is needed for each bit of Mi.

Lines 1(e) and 1(f): Due to the use of Broadcast Single Bit , all fault-free processors receive
identical vector Mj from each processor Pj . Using these M vectors, each processor Pi attempts
to find a set Pmatch containing exactly n − t processors such that, for every pair Pj , Pk ∈ Pmatch,
Mj [k] = Mk[j] = true . Since the M vectors are received identically by all the fault-free processors
(using Broadcast Single Bit), they can compute identical Pmatch. However, if such a set Pmatch

does not exist, then the fault-free processors conclude that all the fault-free processors do not have
identical input – in this case, they decide on some default value, and terminate the algorithm. In
the following discussion, we will show the correctness of this step.

In the proof of the lemmas 1 and 2, we assume that the fault-free processors (that is, the
processors in set Pgood) always trust each other – this assumption will be shown to be correct later
in Lemma 4.

Lemma 1 If for each fault-free processor Pi ∈ Pgood, vi(g) = v(g), for some value v(g), then a set
Pmatch necessarily exists (assuming that the fault-free processors trust each other).

Proof: Since all the fault-free processors have identical input v(g) in generation g, Si = C2t(v(g))
for all Pi ∈ Pgood. Since these processors are fault-free, and trust each other, they send each other
correct messages in the matching stage. Thus, Ri[j] = Sj[j] = Si[j] for all Pi, Pj ∈ Pgood. This fact
implies that Mi[j] = true for all Pi, Pj ∈ Pgood. Since there are at least n− t fault-free processors,
it follows that a set Pmatch of size n− t must exist. 2

7

Observe that, although the above proof shows that there exists a set Pmatch containing only
fault-free processors, there may also be other such sets that contain some faulty processors as well.
That is, all the processors in Pmatch cannot be assumed to be fault-free.

Converse of Lemma 1 implies that, if a set Pmatch does not exist, it is certain that the fault-free
processors do not have the same input values. In this case, they can correctly agree on some default
value and terminate the algorithm. This proves the correctness of Line 1(f).

In the case when a set Pmatch is found, the following lemma is useful.

Lemma 2 The fault-free processors in Pmatch (that is, all the processors in Pmatch ∩ Pgood) have
the same input for generation g.

Proof: |Pmatch∩Pgood| ≥ n−2t because |Pmatch| = n−t and there are at most t faulty processors.
Consider any two processors Pi, Pj ∈ Pmatch ∩ Pgood. Since Mi[j] = Mj [i] = true , it follows that
Si[i] = Sj[i] and Sj[j] = Si[j]. Since there are n − 2t fault-free processors in Pmatch ∩ Pgood, this
implies that the codewords computed by these fault-free processors (in Line 1(a)) contain at least
n− 2t identical symbols. Since the code C2t has dimension (n− 2t), this implies that the fault-free
processors in Pmatch ∩ Pgood must have identical input in generation g. 2

3.2 Checking Stage

When Pmatch is found during the matching stage, the checking stage is entered.

Lines 2(a) and 2(b): Every fault-free processor Pj /∈ Pmatch checks whether the symbols re-
ceived from the trusted processors in Pmatch are consistent with a valid codeword: that is, check
whether Rj/Pmatch ∈ C2t. The result of this test is broadcasted as a 1-bit notification Detectedi,
using Broadcast Single Bit . If Rj/Pmatch /∈ C2t, then processor Pj is said to have detected an
inconsistency.

Line 2(c): If no processor announces in Line 2(b) that it has detected an inconsistency, each
fault-free processor Pi chooses C

−1
2t (Ri/Pmatch) as its decision value for generation g.

The following lemma argues correctness of the decision made in Line 2(c).

Lemma 3 If no processor detects inconsistency in Line 2(a), all fault-free processors Pi ∈ Pgood

decide on the identical output value v′(g) such that v′(g) = vj(g) for all Pj ∈ Pmatch ∩ Pgood.

Proof: Observe that size of set Pmatch ∩Pgood is at least n− 2t, and hence the inverse operations
C−1
2t (Ri/Pmatch) and C−1

2t (Ri/Pmatch ∩ Pgood) are both defined.

Since fault-free processors send correct messages, Ri/Pmatch ∩ Pgood are identical for all fault-
free processors Pi ∈ Pgood. Since no inconsistency has been detected by any processor, every
fault-free processor Pi decides on C−1

2t (Ri/Pmatch) as its output. Since C2t has dimension (n− 2t),
C−1
2t (Ri/Pmatch) = C−1

2t (Ri/Pmatch ∩ Pgood). It then follows that all the fault-free processors Pi

decide on the identical value v′(g) = C−1
2t (Ri/Pmatch∩Pgood) in Line 2(c). Since Rj/Pmatch∩Pgood =

Sj/Pmatch ∩Pgood for all processors Pj ∈ Pmatch ∩Pgood, v
′(g) = vj(g) for all Pj ∈ Pmatch ∩Pgood. 2

8

3.3 Diagnosis Stage

When any processor that is not in Pmatch announces that it has detected an inconsistency, the
diagnosis stage is entered. The algorithm allows for the possibility that a faulty processor may
erroneously announce that it has detected an inconsistency. The purpose of the diagnosis stage is
to learn new information regarding the potential identity of a faulty processor. The new information
is used to remove one or more edges from the diagnosis graph Diag Graph – as we will soon show,
when an edge (j, k) is removed from the diagnosis graph, at least one of Pj and Pk must be faulty.
We now describe the steps in the Diagnosis Stage.

Lines 3(a) and 3(b): Every fault-free processor Pj ∈ Pmatch uses Broadcast Single Bit to broad-
cast Sj[j] to all processors. Let us denote by R#[j] the result of the broadcast from Pj . Due to
the use of Broadcast Single Bit , all fault-free processors receive identical R#[j] for each processor
Pj ∈ Pmatch. This information will be used for diagnostic purposes.

Line 3(c) and 3(d): Every fault-free processor Pi uses flag Trusti[j] to record whether it “be-
lieves”, as of this time, that each processor Pj ∈ Pmatch is fault-free or not. Then Pi broadcasts
Trusti/Pmatch to all processors using Broadcast Single Bit . Specifically,

• If Pi trusts Pj and Ri[j] = R#[j], then set Trusti[j] = true ;

• If Pi does not trust Pj or Ri[j] 6= R#[j], then set Trusti[j] =false .

Line 3(e): Using the Trust vectors, each fault-free processor Pi then removes any edge (j, k)
from the diagnosis graph such that Trustj[k] or Trustk[j] = false . Due to the used of Broad-
cast Single Bit , all fault-free processors receive identical Trust vectors. Hence they will remove
the same set of edges and maintain an identical view of the updated Diag Graph .

Line 3(f): As we will soon show, in the case R#/Pmatch ∈ C2t, a processor Pj /∈ Pmatch that
announces that it has detected an inconsistency, i.e., Detectedj =true , must be faulty if no edge
attached to vertex j was removed in Line 3(e). Such processors Pj are “isolated”, by having all edges
attached to vertex j removed from Diag Graph , and the fault-free processors will not communicate
with it anymore in subsequent generations.

Line 3(g): As we will soon show, a processor Pj must be faulty if at least t+ 1 edges at vertex j
have been removed. The identified faulty processor Pj is then isolated.

Lines 3(h) and 3(i): Since Diag Graph is updated only with information broadcasted with
Broadcast Single Bit (Detected, R# and Trust), all fault-free processors maintain an identical view
of the updated Diag Graph . Then they can compute an identical set Pdecide ⊂ Pmatch containing
exactly n − 2t processors such that every pair Pj , Pk ∈ Pdecide trust each other. Finally, every
fault-free processor chooses C−1

2t (R#/Pdecide) as its decision value for generation g.

We first prove the following property of the evolution of Diag Graph .

Lemma 4 Every time the diagnosis stage is performed, at least one edge attached to a vertex
corresponding to a faulty processor will be removed from Diag Graph, and only such edges will be
removed.

Proof: We prove this lemma by induction. For the convenience of discussion, let us say an edge
(j, k) is “bad” if at least one of Pj and Pk is faulty.

9

Consider a generation g starting with any instance of the Diag Graph in which only bad edges
have been removed. When the diagnosis stage is performed, there are two possibilities: (1) a fault-
free processor Pi /∈ Pmatch detects an inconsistency; or (2) a faulty processor Pj /∈ Pmatch announces
that it has detected an inconsistency. We consider the two possibilities separately:

1. A fault-free processor Pi /∈ Pmatch detects an inconsistency: In this case, Ri/Pmatch /∈ C2t.
However, according to the definition of Pmatch, Rk/Pmatch = Sk/Pmatch ∈ C2t for every
processor Pk ∈ Pmatch∩Pgood. This implies that there must be a faulty processor Pj ∈ Pmatch,
which is trusted by Pi and Pk, has sent different symbols to the fault-free processors Pi and
Pk during the matching stage. Thus, the R#[j] must be different from at least one of Ri[j]
and Rk[j]. As a result, Trusti[j] = false or Trustk[j] = false . Then at least one of the bad
edges (i, j) and (j, k) will be removed in Line 3(e).

2. A faulty processor Pj /∈ Pmatch announces that it detects an inconsistency: Denote by X ⊂
Pmatch the set of processors ∈ Pmatch that Pj trusts. According to the algorithm, either an
bad edge (j, k) for some Pk ∈ X was removed in Line 3(e), or none of such edges is removed.
In the former case, the bad edge (j, k) is removed. In the later case, there are two possibilities

(a) R#/Pmatch ∈ C2t: Given that no edge (j, k) for every Pk ∈ X was removed in Line 3(e),
one can conclude that, if Pj is fault-free, then Trustj[k] =true for all Pk ∈ X, and
Rj [k]/X = R#[k]/X ∈ C2t. On the other hand, observe that Pj computes Detectedj by
checking whether Rj/X ∈ C2t, since any message from untrusted processors in Pmatch

should have been ignored by Pj in Line 1(b). From Detectedj = true , one can conclude
that, if Pj is fault-free, Rj/X /∈ C2t. Now we have a contradiction if Pj is fault-free.
So processor Pj must be faulty and all edges at vertex j are bad. These bad edges are
removed in Line 3(f).

(b) R#/Pmatch /∈ C2t: In this case, similar to the discussion in case 1, some bad edge
connecting two vertices corresponding to processors in Pmatch is removed in Line 3(e).

So by the end of Line 3(f), at least one new bad edge has been removed. Moreover, since
Ri[k] = R#[k] for all fault-free processors Pk ∈ Pmatch ∩ Pgood, Trusti[k] remains true for every
pair of processors Pi, Pk ∈ Pgood, which implies that the vertices corresponding to the fault-free
processors will remain fully connected, and each will always have at least n − t − 1 edges. This
follows that a processor Pj must be faulty if at least t+ 1 edges at vertex j has been removed. So
all edges at j are bad and will be removed in Line 3(g).

Now we have proved that for every generation that begins with a Diag Graph in which only bad
edges have been removed, at least one new bad edge, and only bad edges, will be removed in the
updated Diag Graph by the end of the diagnosis stage. Together with the fact that Diag Graph
is initialized as a complete graph, we finish the proof. 2

The above proof of Lemma 4 shows that all fault-free processors will trust each other throughout
the execution of the algorithm, which justifies the assumption made in the proofs of the previous
lemmas. The following lemma shows the correctness of Lines 3(h) and 3(i).

Lemma 5 By the end of diagnosis stage, all fault-free processors Pi ∈ Pgood decide on the same
output value v′(g), such that v′(g) = vj(g) for all Pj ∈ Pmatch ∩ Pgood.

10

Proof: First of all, the set Pdecide necessarily exists since there are at least n − 2t ≥ t+ 1 fault-
free processors in Pmatch ∩ Pgood that always trust each other. Secondly, since the size of Pdecide is
n−2t ≥ t+1, it must contain at least one fault-free processor Pk ∈ Pdecide∩Pgood. Since Pk still trusts
all processors of Pdecide in the updated Diag Graph, R#/Pdecide = Rk/Pdecide = Sk/Pdecide. The
second equality is due to the fact that Pk ∈ Pmatch. Finally, since the size of set Pdecide is n−2t, the
inverse operation of C−1

2t (R#/Pdecide) is defined, and it equals to C−1
2t (Sk/Pdecide) = vk(g) = vj(g)

for all Pj ∈ Pmatch ∩ Pgood, as per Lemma 2. 2

We can now conclude the correctness of the Algorithm 1.

Theorem 1 Given n processors with at most t < n/3 are faulty, each given an input value of
L bits, Algorithm 1 achieves consensus correctly in L/D generations , with the diagnosis stage
performed for at most t(t+ 1) times.

Proof: According to Lemmas 1 to 5, consensus is achieved correctly for each generation g of D
bits. So the termination and consistency properties are satisfied for the L-bit outputs after L/D
generations. Moreover, in the case all fault-free processors are given an identical L-bit input v, the
D bits output v′(g) in each generation g equals to v(g) as per Lemmas 1, 3 and 5. So the L-bit
output v′ = v and the validity property is also satisfied.

According to Lemma 4 and the fact that a faulty processor Pj will be removed once more than t
edges at vertex j have been removed, it takes at most t(t+1) instance of the diagnosis stage before
all faulty processors are identified. After that, the fault-free processors will not communicate with
the faulty processors. Thus, the diagnosis stage will not be performed any more. So it will be
performed for at most t(t+ 1) times in all cases. 2

3.4 Complexity

We have discussed the operations of the proposed multi-valued consensus algorithm above. Now
let us study the communication complexity of this algorithm. Let us denote by B the complexity of
broadcasting 1 bit with one instance of Broadcast Single Bit . In every generation, the complexity
of each stage is as follows:

• Matching stage: every processor Pi sends at most n− 1 symbols, each of D/(n− 2t) bits, to

the processors that it trusts, and broadcasts n−1 bits for Mi. So at most n(n−1)
n−2t D+n(n−1)B

bits in total are transmitted by all n processors.

• Checking stage: every processor Pj /∈ Pmatch broadcasts one bit Detectedj with Broad-
cast Single Bit , and there are t such processors. So tB bits are transmitted.

• Diagnosis stage: every processor Pj ∈ Pmatch broadcasts one symbol Sj[j] of D/(n− 2t) bits
with Broadcast Single Bit ; and every processor Pi broadcasts n − t bits of Trusti/Pmatch

with Broadcast Single Bit . So the complexity is n−t
n−2tDB + n(n− t)B bits.

According to Theorem 1, there are L/D generations in total. In the worst case, Pmatch can be
found in every generation, so the matching and checking stages will be performed for L/D times. In
addition, the diagnosis stage will be performed for at most t(t+1) time. Hence the communication

11

complexity of the proposed consensus algorithm, denoted as Ccon(L), is then computed as

Ccon(L) =

(

n(n− 1)

n− 2t
D + n(n− 1)B + tB

)

L

D
+ t(t+ 1)

(

n− t

n− 2t
D + n(n− t)

)

B (1)

For a large enough value of L, with a suitable choice of D =

√

(n2
−n+t)(n−2t)L
t(t+1)(n−t) , we have

Ccon(L) =
n(n− 1)

n− 2t
L+ 2BL0.5

√

(n2 − n+ t)t(t+ 1)(n − t)

n− 2t
+ t(t+ 1)n(n − t)B (2)

Error-free algorithms that broadcast 1 bit with communication complexity Θ(n2) bits are known
[1, 2]. So we assume B = Θ(n2). Then the complexity of our algorithm for t < n/3 becomes

Ccon(L) =
n(n− 1)

n− 2t
L+O(n4L0.5 + n6) = O(nL+ n4L0.5 + n6). (3)

So for sufficiently large L (Ω(n6)), the communication complexity approaches O(nL).

4 Multi-Valued Broadcast and Tolerating t ≥ n/3 Failures

Here we briefly discuss the Byzantine broadcast problem (also known as the “Byzantine Generals
Problem” [7]). Similar to the consensus problem, the broadcast problem also considers achieving
agreement among n processors: A designated “source” processor tries to broadcast an L-bit value
to the other processors, while t < n/3 processors (probably including the source) may be faulty.
Using techniques introduced in this paper, we can achieve error-free multi-valued broadcast with
communication complexity Cbro(L) < 1.5(n−1)L+Θ(n4L0.5) bits for t < n/3 and large L [8]. Notice
that the complexity of any broadcast algorithm, even the ones that allow a positive probability of
error, is lower bounded by (n−1)L. So we can achieve error-free broadcast with complexity within
a factor of 1.5 + ǫ to the optimal for any constant ǫ > 0 and sufficiently large L.

Most of our discussion in the previous section is independent of the number of faulty processors.
The requirement for t < n/3 is needed only for the correctness of the deterministic error-free 1-bit
broadcast algorithm Broadcast Single Bit . In practice, it may be desirable to be able to tolerate
t ≥ n/3 failures at the cost of a non-zero probability of error. This need can be met by our algorithm
with a small modification: substitute Broadcast Single Bit with any probabilistically correct 1-bit
broadcast algorithm that tolerates the desired number of failures (ones with authentication from
[10, 4] for example). With this modification, our algorithm tolerates the same number of failures as
the 1-bit broadcast algorithm does, and makes an error only if the 1-bit broadcast algorithm fails.
The only difference in the communication complexity is the term sub-linear in L. So for sufficiently
large L, the complexity of the modified algorithm is also O(nL).

5 Conclusion

In this paper, we present efficient error-free Byzantine consensus algorithm for long messages. The
algorithm requires O(nL) total bits of communication for messages of L bits for sufficiently large L.
Our algorithm makes no cryptographic assumption and still is able to always solve the Byzantine
consensus problem correctly.

12

References

[1] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit optimal distributed consensus.
Computer science: research and applications, 1992.

[2] Brian A. Coan and Jennifer L. Welch. Modular construction of a byzantine agreement protocol
with optimal message bit complexity. Inf. Comput., 97(1):61–85, 1992.

[3] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191–204, 1985.

[4] Danny Dolev and H. Ray Strong. Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing, 12(4):656–666, 1983.

[5] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued byzantine agreement. In
PODC ’06, 2006.

[6] Valerie King and Jared Saia. Breaking the o(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. In Proceeding of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, PODC ’10, pages 420–429, New York, NY, USA, 2010.
ACM.

[7] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. on Programming Languages and Systems, 1982.

[8] Guanfeng Liang and Nitin Vaidya. Complexity of multi-valued byzantine agreement. Technical
Report, CSL, UIUC (http://arxiv.org/abs/1006.2422), June 2010.

[9] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JOUR-
NAL OF THE ACM, 1980.

[10] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and byzantine
agreement for t ≥ n/3. Technical Report, IBM Research, 1996.

[11] Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In STOC ’79, 1979.

13

	1 Introduction
	2 Byzantine Consensus: Salient Features of the Algorithm
	3 Multi-Valued Consensus
	3.1 Matching Stage
	3.2 Checking Stage
	3.3 Diagnosis Stage
	3.4 Complexity

	4 Multi-Valued Broadcast and Tolerating tn/3 Failures
	5 Conclusion

